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The distribution functions for three statistics, the mean, standard deviation, and coeflicient
of skewness, for small samples from various distributions were obtained by Monte Carlo
experiments. Sample sizes of 10 (10) 90 were considered, and the distributions used were the
normal, Gumbel (extreme value type 1), log normal, Pearson type 3 (gamma), Weibull, and
Pareto type 1 (Pearson type 4). Values of the coefficient of skewness used in generating
the samples were in the range [0.0, 150]. Pronounced skews, biases, and constraints in the
sampling properties of the statistics were observed. Examples of the available graphs of the

distribution functions are presented.

Decision variables pertaining to the design of water
resource systems are functions of various parameters, in-
cluding those that characterize the stochastic properties of
hydrologic inputs to the systems. Because hydrologic se-
quences are of finite lengths, only estimates of the hydro-
logic parameter values can be obtained, and as a result,
uncertainty in the design decisions is in part attributed to
hydrologic uncertainty. The particular set of hydrologic
parameters to be estimated depends upon the purposes and
objectives underlying the proposed development of a water
resource system. In general, the set is likely to include
those parameters that are defined in terms of the low-order
moments, namely, the mean, standard deviation, and coeffi-
cient of skewness.

Generally, a hydrologic sequence of length n is assumed to
be a sample on n identically distributed random variables,
where each random variable has a finite mean u, standard
deviation o, and coefficient of skewness . Moreover, the n
random variables ordered in time are assumed to be a station-
ary stochastic process. Consequently, estimates of u, o, and 7y,
denoted by X, 8, and G, may be defined in terms of time
averages of the n observations forming the hydrologic se-
quence. The sampling properties of X, S, and & as functions
of n depend upon the method of estimation, the marginal
probability distribution function, and the type of generating
mechanism of the stochastic process.

To gain some insight into the sampling properties of X, S,
and G, Monte Carlo experiments were carried out on the
basis of the method of moments for estimating u, o, and v
and under the assumption that the stochastic process is
purely independent, so that the n random variables are
independent as well as identical. The experiments were per-
formed on each of several distribution functions for various
values of n and y. From these experiments the probability
distribution functions of X, S, and G were defined empirically,
and values of the mean, standard deviation, coefficient of
skewness, and coefficient of kurtosis for X, 8, and G were
calculated.

EXPERIMENTAL DESIGN

Six probability distribution functions were considered:
normal, three-parameter log normal, three-parameter
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Pearson type 3 (gamma), Gumbel (extreme value type 1),
Weibull, and Pareto (Pearson type 4). For each distribu-
tion function F(y), 100,000 samples of size n = 10 (10)
90 were generated with u = 0, ¢ = 1, and y equal to the
values indicated by an X in Table 1.

In general, let Y,; denote the ith observation for the jth
sequence of length n. For the jth sequence the mean ¥,
standard deviation S;, and coefficient of skewness G; were
defined as follows:

n

Y= 2 Yi/n (1)

i=1

S, = [Z Yi/n — if,’]mf @)

t=1

Q; = [E Y:'/n — 37,8 — 1",.3]/5,-’ (3

t=1

]

Let X,, denoting any one of the above three statistics,
be an observation on the random variable X having mean
u(X), standard deviation ¢(X), coefficient of skewness
v(X), and coefficient of kurtosis A(X) defined as

wX) = E(X) 4
o(X) = {E[X — E(X)I'}"” (5)
v(X) = {E[X — E(X)I'}/e*(X) (6)
NX) = {E[X — E(X)]'}/s"(X) ©)

From the M = 100,000 observations on X the values of
n(X), o(X), y(X), and A(X) were approximated by

mm==;XvM (8)
#(X) = Z X'/M — ﬁ’(X)]‘ (9

YX) = | 2 X/ M — 3(0FX) — ﬁa(X)] / #(X)
(10)

2 XYM — 4p(X)H(X)F(X)

_ji=1

— 6'(X)d%(X) — rz‘(X)] / #(x)

AX)
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TABLE 1. Values of v for Distribution Function F

F(y) y=0y=}tv=3 y=03" vy=1v=1H4y=02M vy=2 y=3 y=4vy=5vy=10 v =15
Normal X
Log normal X X X X X X X X X X X X
Pearson X X X X X X X X X X
Gumbel X
Weibull X X X X X X X X X X X X
Pareto X X X X X

The distribution function F(z) = P[X < z] was defined \(Y) = exp [4a’] + 2 exp [3¢°] + 3 exp [24%] — 3
ag follows. For any one of the statistics X, a range R = (13¢)
[Rx, Rz'] was selected as needed, such that at least
P[Ry < z < Ry'] < 10™ The range R was divided into Three-parameter Pearson
400 uniform intervals type 3 (gamma)

b-1
(k=1 ., 401 —k, _ k _ . =1 <y—m) [_(y—_m.ﬂ
(= Gt o+ st v, s W=ge\ <) = [-\7 (140
—_ >
+——4°200kRX‘)1k=1,--~,400} y=m

p(Y) = m+ ad (14b)

For each I, a count. C, was determined of the occurrences Ve
of the statistic X,, falling in that interval, whereby the a(Y) = a(b) (14¢)

istributi ti = ; s

distribution function F(z) P[X < z] was defined as Y(Y) = 2/(B)" (14d)
F(z) = 2 €:/100,000 NY) = 3+ 6/b (14¢)

kI’ <z
where 1,/ is the lower end point of Is. Gum?f)ll (extreme value
type

SEQUENCE-GENERATING ALGORITHMS

. 1 —m
For the six distributions noted above, the probability fly) = 5 &P [_(y a )J
density functions f(y), the distribution functions F(y) (in

those cases where F(y) has a closed form representation), y—m } :
and the relations of their parameters to u(Y), o(¥), y(Y), €xp | —exp [_( 2 ):I (15a)
and A(Y) are as follows. ’
Normal 5 T sys e
y—m
_ 1 1y — m)’] F(y) = exp {—exp [—( )]} (150)
1(v) 2@ exD[ 2( - (120) a
uw(Y) = m+ «a (15¢)
—o Sy
V) = 6)!/2
V) = m (128 o(Y) = ar/(6) (15d)
Y) = —¢"(1)/[¥'(1)]* ~ 1.139
o) = a (129 v(Y) (1)/[¥'(1)] 39547  (15¢)
MY) = () /[¢ (D] =~ 2.400
W1 = 0 (124) ) =¥ ( )/ [¥'(1)] (151)
where « =~ 0.57722 is Euler’s number and ¢(z) is the
AMY) = 3 (12¢) digamma function, ie, d In T(z)/dz, where ¢ ( ),
¥’( ), and ¢”( ) denote the first, second, and third
Three-parameter log normal derivatives of ().
B —— - EY EE
W =G =9 °""{ 2[ a ]
=g =—m y — m\°
y>c (13a) o) = a< a ) exp [_(_a_—)] (16a)
p(Y) = ¢ + exp [(a"/2) + m] (13b) y=>m
Y) = 5 29 _ 2 172 _ ¢
o(Y) = {exp [2(a’ + m)] ~ exp [¢" + 2m]}"* (139 FOY) = 1 — exp [_<y = m)] (165
2 2
Y) = exp[3q]—3exp[a]+2
7(Y) {exp [¢°] — 1}** (13d) p(¥) = m + aT(1 + 1/¢) (16¢)

SIE S
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o(Y) = af[T(1 + 2/0) — T°(1 + 1/0)]}'*  (16d)
v(¥) = [T + 3/c) — 3T + 2/9T(1 + 1/0)

+ 2I%1 + 1/91{ [T + 2/¢) — (1 + 1/9)]} ™2
' ' (16¢)

NY) = (T(1 4 4/c) — 4T(1 4+ 1/9T(1 + 3/0)
4+ 6T%(1 + 1/e)T(1 + 2/c) — 3T*(1 + 10)]

AT( + 2/9) — T+ 1/9)7 (16)

Pareto type 1
(Pearson type 4)

o) = ba/y***  a>0 b>0 y>a (170
F(y) =1 — (a/y)’ (17b)
W) = b/ - (79

o(Y) = {[a"b/(d — 2)] — [a’8"/(b — D)’I}** (17d)

1—

2=

104

20-]

¥(¥) = 26 + Db — 2/(n — B (17¢)

MY) =336+ b4 2)(b — 2)/b(b — (b — 4) (17))

For these distributions, the relations of y(Y) to A(Y) are
shown in Figure 1,-and selected values are shown in Table 2.

To generate samples from each of the distributions, it
i necessary to devise algorithms for the generation of
appropriately distributed pseudorandom numbers. The gen-
eration of such numbers is at best an art. It should be
noted that a number in a digital computer has a very
specific form. Both the range of magnitude and the degree
of precision (or ‘discreteness’) of the representation are
circumscribed by the computer hardware and software. An
analysis of a computer system’s arithmetic (both the hard-
ware and the software) and the built-in algorithms for
generating pseudorandom numbers should be an integral
part of the studies for any important project where deci-
sions are dependent upon analyses utilizing such numbers.

The basic set of pseudorandom numbers are those that
are uniformly distributed as these numbers are utilized in
the generation of other numbers following specific distribu-
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1. Relations of skew to kurtosis.
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TABLE 2. Values of Skew and Kurtosis

Kurtosis AMY) for Indicated Distribution

w0
=
®
£

Log
¥(¥Y) Normal Gumbel Normal Pearson Weibull Pareto

tions. For this study of the sampling properties of the esti-
mates of the mean, standard deviation, and coefficient of
skewness, a well-tested uniform pseudorandom number
generator [Lewis et al., 1969] and a carefully programed
Box-Muller transform [Box and Muller, 1958] for gen-
erating normally distributed pseudorandom numbers were

0.0 3.0 used.
0.25 3.11 3.0 2.77 Let u denote a pseudorandom number uniformly dis-
0.50 3.45 3.38 3.03 . .
0.71 3.90 3.75 3 40 tributed on the interval [0, 1], and let » denote a pseudo-
1.00 4.83 4.50 4.16 random number normally distributed with zero mean and
1.14 2.40 5.39 4.95 4.62 unit standard deviation. The algorithms used to generate
;3(1) lg gg ggg ggg the samples from the six distributions noted above were as
3.00 22.40 16.50 17.66 '20.72 follows.
4.00 41.00 27.00 30.60 44.67
5.00 68.26 40.50 48.25 98.49 Normal
10.00 387.78 153.00 218.43 '
15.00 1139.73 340.50 546.73
Yi = N (18)
TABLE 3. Bias Factors for Standard Deviation
- Sequence Length n
Distribution Skew, vy 10 20 30 40 50 60 70 80 90
Normal 0.0 1.084 1.040 1.026 1.019 1.016 1.013 1.011 1.010 1.009
Gumbel 1.14 1.108 1.053 1.035 1.027 1.021 1.018 1.015 1.013 1.012
Log normal 0.25 1.085 1.040 1.026 1.020 1.016 1.013 1.011 1.010 1.009
0.50 1.088 1.042 1.028 1.021 1.016 1.014 1.012 1.010 1.009
0.71 1.093 1.044 1.029 1.022 1.017 1.014 1.012 1.011 1.010
1.00 1.101 1.048 1.032 1.024 1.019 1.016 1.014 1.012 1.011
1.14 1.104 1.050 1.033 1.025 1.020 1.017 1.015 1.013 1.011
1.41 1.116 1.057 1.038 1.029 1.023 1.019 1.017 1.015 1.013
2.00 1.141 1.072 1.049 1.038 1.031 1.026 1.023 1.020 1.018
3.00 1.186 1.100 1.071 i.056 1.047 1.041 1.036 1.032 1.029
4.00 1.233 1.131 1.095 1.076 1.065 1.057 1.050 1.045 1.041
5.00 1.276 1.161 1.119 1.096 1.083 1.073 1.065 1.059 1.054
10.00 1.452 1.284 1.221 1.184 1.163 1.147 1.133 1.123 1.114
15.00 1.581 1.378 1.299 1.254 1.226 1.206 1.188 1.175 1.164
Pareto 3.00 1.191 1.104 1.073 1.057 1.047 1.040 1.034 1.030 1.027
4.00 1.232 1.133 1.097 1.077 1.064 1.055 1.049 1.043 1.039
5.00 1.265 1.157 1.116 1.094 1.079 1.069 1.061 1.055 1.050
10.00 1.354 1.224 1.173 1.145 1.125 1.111 1.101 1.092 1.085
15.00 1.392 1.253 1.199 1.168 1.147 1.131 1.119 1.110 1.102
Pearson 0.25 1.084 1.039 1.026 1.019 1.015 1.013 1.011 1.009 1.008
0.50 1.088 1.042 1.028 1.021 1.016 1.013 1.011 1.010 1.009
0.71 1.091 1.044 1.029 1.021 1.017 1.014 1.012 1.011 1.009
1.00 1.099 1.048 1.032 1.024 1.019 1.016 1.014 1.012 1.010
1.14 1.104 1.051 1.033 1.025 1.020 1.017 1.014 1.013 1.011
1.41 1.112 1.055 1.037 1.027 1.022 1.018 1.016 1.014 1.012
2.00 1.138 1.070 1.047 1.036 1.029 1.025 1.021 1.018 1.016
3.00 1.201 1.104 1.071 1.054 1.044 1.036 1.031 1.027 1.025
4.00 1.289 1.153 1.106 , 1.082 1.067 1.057 1.049 1.044 1.039
5.00 1.390 1.212 1.146 1.114 1.094 1.080 1.069 1.061 1.055
Weibull 0.25 1.080 1.037 1.024 1.018 1.014 1.012 1.010 1.009 1.008
0.50 1.083 1.038 1.024 1.018 1.015 1.012 1.011 1.009 1.008
0.71 1.087 1.041 1.026 1.020 1.016 1.013 1.011 1.010 1.009
1.00 1.095 1.045 1.029 1.022 1.017 1.014 1.012 1.011 1.010
1.14 1.100 1.047 1.031 1.023 1.018 1.015 1.013 1.011 1.010
1.41 1.111 1.053 1.035 1.026 1.021 1.017 1.015 1.013 1.012
2.00 1.140 1.070 1.046 1.035 1.028 1.024 1.020 1.018 1.016
3.00 1.199 1.104 1.071 1.055 1.044 1.038 1.033 1.029 1.026
4.00 1.263 1.144 1.100 1.078 1.064 1.055 1.048 1.043 1.039
5.00 1.327 1.184 1.131 1.104 1.086 1.075 1.066 1.058 1.053 *
10.00 1.622 1.380 1.285 1.234 1.200 1.177 1.159 1.144 1.133
15.00 1.861 1.551 1.422 1.352 1.304 1.273 1.247 1.225 1.209

Bias ratio is a(S) for standard deviation. The ratio is the population value over the mean of 100,000 samples.

R
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TABLE 4. Bias Factors for Skew

Sequence Length n

Skew, v 10 20 30 40 50 60 70 80 90
Distribution
Gumbel 1.14 2.172 1.541 1.355 1.269 1.217 1.183 1.156 1.137 1.123
Log normal 0.25 1.903 1.381 1.246 1.183 1.141 1.116 1.099 1.086 1.076
0.50 1.960 1.413 1.267 1.198 1.156 1.129 1.109 1.096 1.085
0.71 2.019 1.450 1.295 1.220 1.176 1.147 1.126 1.111 1.099
1.00 2.100 1.499 1.331 1.249 1.201 1.168 1.144 1.126 1.113
1.14 2.161 1.534 1.359 1.268 1.221 1.188 1.163 1.144 1.139
1.41 2.251 1.595 1.404 1.309 1.252 1.218 1.189 1.168 1.151
2.00 2.528 1.773 1.545 1.428 1.358 1.307 1.276 1.248 1.220
3.00 3.066 2.120 1.827 1.665 1.573 1.506. 1.455 1.414 1.381
4.00 3.641 2.498 2.134 1.931 1.813 1.727 1.659 1.607 1.563
5.00 4.234 2.888 2.453 2.209 2.064 1.959 1.876 1.811 1.757
10.00 7.247 4.880 4.087 3.636 3.362 3.161 3.002 2.876 2.773
15.00 10.239 6.857 5.710 5.055 4.654 4.359 4.126 3.940 3.788
Pareto 3.00 2.744 1.954 1.701 1.570 1.484 1.425 1.381 1.345 1.316
4.00 3.464 2.429 2.089 1.910 1.791 1.708 1.646 1.595 1.553
5.00 4.202 2.922 2.495 2.269 2.118 2.013 1.933 1.868 1.813
10.00 7.975 5.463 4.611 4.154 3.846 3.629 3.464 3.328 3.215
15.00 11.784 8.038 6.762 6.075 5.613 5.285 5.035 4.830 4.659
Pearson 0.25 1.868 1.359 1.232 1.169 1.129 1.103 1.088 1.078 1.066
0.50 1.925 1.407 1.255 1.186 1.146 1.119 1.103 1.088 1.080
0.71 1.969 1.416 1.270 1.201 1.160 1.132 1.112 1.098 1.087
1.00 1.963 1.430 1.279 1.207 1.165 1.138 1.119 1.104 1.093
1.14 1.972 1.441 1.291 1.216 1.174 1.145 1.125 1.109 ©1.096
1.41 1.978 1.450 1.302 1.226 1.182 1.151 1.130 1.113 1.100
2.00 2.054 1.519 1.354 1.273 1.225 1.192 1.166 1.147 1.132
3.00 2.233 1.650 1.464 1.364 1.302 1.260 1.228 1.204 1.186
4.00 2.466 1.811 1.590 1.473 1.398 1.345 1.307 1.276 1.252
5.00 2.735 1.982 1.724 1.588 1.499 1.436 1.389 1.352 1.323
Weibull 0.25 1.863 1.359 1.224 1.160 1.125 1.104 1.090 1.077 1.068
0.50 1.778 1.326 1.205 1.148 1.116 1.097 1.083 1.072 1.063
0.71 1.777 1.333 1.213 1.155 1.124 1.104 1.090 1.078 1.070
1.00 1.795 1.349 1.226 1.163 1.132 1.110 1.095 1.082 1.073
1.14 1.819 1.366 1.239 1.176 1.141 1.118 1.102 1.088 1.079
1.41 1.874 1.402 1.265 1.197 1.158 1.133 1.114 1.099 1.088
2.00 2.057 1.521 1.357 1.274 1.224 1.191 1.166 1.147 1.132
3.00 2.441 1.770 1.553 1.438 1.367 1.319 1.282 1.253 1.230
4.00 2.873 2.053 1.778 1.631 1.538 1.473 1.424 1.384 1.353
5.00 3.325 2.352 2.019 1.838 1.722 1.642 1.579 1.529 1.490
10.00 5.661 3.904 3.279 2.934 2.708 2.547 2.422 2.320 2.240
15.00 7.990 5.463 4.548 4.041 3.706 3.466 3.280 3.129 3.008
Bias ratio o*(G) :

for skew — 2.194 1.543 1.352 1.260 1.207 1.171 1.146 1.128 1.113

Bias ratio is «(G) for skew. The ratio is the population value over the mean of 100,000 samples.

Log normal

Yi ¢+ exp[m + an:]

Gumbel

Y m + af{—n[—1n u]}

Weibull

yi = m+ a[—In (1 — w)]"°

Pareto

Yi a(l - ui)—l/b

Pearson

(19)

(20)

(21)

(22)

{61

yi = m+ a{—ln 1] %« — B: In u.} (23a)
k=1

where B, is distributed as beta, B, ~ (b — [b],1 — b +
[5]), and where [b] denotes the greatest integer equal to
or less than b. The algorithm for B, is as follows: (1) Set
r=b—[b];s=1—7r=1— b+ [b]. (2) Generate
w, us ~ U0, 1]. (3) Set & = w", £ = w". (4) If
& + & > 1, return to 2; otherwise proceed to 5. (5) Set
B, = &/(& + £). Note that if b is integral, B, = 0, so that

b
yi = m + a{—ln 11 u.-k} (23b)
k=1 ‘
orif b < 1, then [b] = 0, so that

y: = m + a{—B; In u;} (23¢)
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The above algorithm for Pearson typc 3 generation is due
to Johnk [1964] and is described by Berman [1971].

To generate the various sets of pseudorandom numbers,
the values of the parameters appearing in the algorithms
were derived by solving the equations relating u(Y), a(Y),
and y(Y) to those parameters such that u(¥Y) =0, oY) =
1, and y(Y) equal the particular values shown in Table 1.

EXPERIMENTAL RESULTS

In the appendix to this paper (the appendix is not included
but is available in paper copy or microfiche form through
the National Technical Information Service, U.S. Depart-
ment of Commerce, Springfield, Virginia 22151) the derived
distribution functions are shown for X, S, and @ over the
experimental ranges of sequence length n, coefficient of
skewness v(Y), and probability density function f(y). The
values of i(X), (X), #(X), and X(X) are presented on each
figure. It should be noted that for skews greater than five,
100,000 trials do not provide sufficient resolution of the upper
tail of the sample distributions of the standard deviation. In
these cases the tails above the probability 99.9 are of question-
able accuracy.

From these results it is seen that the distributions of X,
8, and G are functions of n, y(Y), and f(¥). As might be
expected, X is an unbiased estimate of u(Y), whereas S and G
are biased estimates of o(¥) and y(Y). The biases in S and G
as functions of n,v(Y), and f(y), expressed as

WALLIS ET AL.: STATISTICS

a(G) = ¥(¥)/%(Y)

are shown in Tables 3 and 4, respectively.

For flood flow frequency studies, the Water Resources
Council [1967] recommmended that the estimate of y(Y)
be defined as

¥(Y) > 0 (25)

G = n"“(M)G (26)

n— 2

where G is given by (3). In a prior publication the Inter-
agency Committee on Water Resources [1966] suggested
that G” be multiplied by the factor (1 + 8.5/n) as given
by Hazen [1930]. Thus for the estimate G the approxi-
mate factor of bias would be given by ‘

o*(G) = n‘/’(ﬁn;l)m)(l + 8.5/n)

n—2 (27)

and is shown as the last line of Table 4. From these figures
it is noted that

¢* = [«%(B)]G (28)

is an approximately unbiased estimate of y(Y) for a
small range of values of y(Y), say, 1% < y(¥) < 2 for
the log normal distribution. However, these figures show
that «(@), given by (25), is very nearly distribution free
for y(Y) < 2'~2,

The distributions of G suggest that G is bounded. Kirby

a(S) = o(¥)/6(Y) (24) [1974] has shown that bounds are given by
10 7]
9
8
7 —
6 |
G*5 |
4 -
3 4
2
1]
0
T T T T T T T T T =
[s} 10 20 30 40 50 60 70 80 90 100

n

Fig.2. Bound on coefficient skewness, with |G| = G* = (n — 2)/(n — 1),
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.o n=10. v=3.000 LOG-NORM

8.5 X 5 G
8.0 EAN 0.001 0.843 0.97% ﬂ
1.5 ST DEY 0.315 0.437 0.6
SKEN 0.925 2.320 0.11? H

KURTOS(S y.0l 8. 790 2.599
6.5 H

1.0

6.0 I

5.9 H H A

S.0 v

9.5

4.0

3.5 4

3.0 H M

2.5

2.0 - Lﬂ-r o

x|

0.0 H L 1

H
-0.% ane MM

aniiezsl
-1.0 H
-8 al 82
0.1 1.0 s.0 2.0 0.0 80.0 8.0 95.0 ”.0 9.9

P (X< x)
Fig. 3. Distribution functions of sample statistics for the log normal distribution.

6] < (v — 2)/(n — D'* (29) by the distribution of G for n = 10 and y(¥) = 3 in Fig-

ures 3-6, which also appear in the appendix. The bounds

and do not depend upon y(Y) or f(y). Equation 29 is on G will be discussed further in a subsequent paper dealing
shown graphically in Figure 2. The bound on G is illustrated  with the distribution of G for observed flood sequences.

n=iC. v=3.000 PERRSON

9.9
8.5 X S G
8.0 MERN 0.002 0.833 1.3
7.5 ST €Y 0.318 0.462 0.624
1.0 SKEM 0.937 1.380 0.053
s KURTOSIS 425 6.206 2.319
6.0 1
5.5 4
5.0
u.5 n W
S
4.0
x
11
s ..J‘
3.0 W
“
2.5 S
—"
n
2.0 Y 4 v
I § H X
1.5 '"T'
»
[ L
1.0 I ﬁ
0.5 1
rTiH .
g L{41H |
0.0 j=id "’:” i 11
-0.5 § oo , 1l
-1.0 rm-- M
-1.8 | 1 Wi 190
0.1 1.0 s.0 20.0 40.0 60.0 80.0 95.0 99.0 99.9
P (X< x)

Fig. 4. Distribution functions of sample statistics for the Pearson distribution.
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Fig. 5. Distribution functions of sample statistics for the Weibull distribution.
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Fig. 6. Distribution functions of sample statistics for the Pareto distribution.
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For certain cases some of the sampling properties of X,
S, and G are known theoretically. For example, given any
distribution for which o(Y) is finite, then o (X) = ¢(Y)/(n)1/2,
In a subsequent paper some known theoretical results will be
compared with the corresponding Monte Carlo results as well
as results on the goodness of fit of specific distributions to the
derived distributions of X, S, and G.
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